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I. INTRODUCTION

This report presents some calculated results of the effec;s that
pure vater ice has on the backscatte- pattern of a perfectly conducting
ground plane. Pure vater ice has very small losses and therefore a
uniform ice layer has little effect on the backscatter of the ground
plane. This would not be the case for other geometries since a curved
ice surface would introduce a lens mechanism. On the other hand, a
rough ice layer, where the thickness of the ice varies as a function of
a spatial coordinate, can significantly alter the manner in which the
ground plane reflects electromagnetic energy. This report investigates
the changes in the backscatter pattern which are due to one type of ice
roughness.

The analysis of the backscatter from a ground plane covered wvith
an ice layer of non-uniform thickness is similar to the analysis of
dielectric multilayers with layer thickness distortions [1]. This
analysis is based on a Physical Optics approximation to the reflected
field. Briefly, this approximation treats each point on the rough ice
surface as if the point vere on an :nfinite tangent plane to that
point. This allows the rough surface to be treated as a uniform ice
layer, at that point, and the reflected field can be found for that
point. An aperture is set up around the ice covered ground plane, and
the reflected fields from each poin: are taken as aperture fields. The
reflected field from the entire stricture is then produced from an
aperture integration using a free space Green’s function. Note that

this study does not include the influence of surface vaves. This



analysis technique is described in mathematical detail in Section II
along with a discussion of the net result.

Examples of the results generated by the technique are given in
Section III. The ice surface roughness is represented by a Gaussian
function and the results for various amplitudes of the Gaussian
function are given. Section IV summarizes the technique and the

limitations which should be considered when using it.

II. DERIVATION OF THE BACKSCATTERED FIELD

A. Introduction

This section is concerned with presenting the mathematical
derivation of the backscattered field from a layer of ice of non-
uniform thickness on a ground plane. The ice may be considered to be
the first layer of a two layer dielectric multilayer structure that is
backed by a conducting plane. This model of the ice covered ground
plane is depicted in Figure 2.1. In the figure, Layer 1 is a uniform
ice layer, having constitutive parameters €10My- Layer 1 is bounded on
one side by the ground plane and on the other side by Layer 2. Layer 2
is simply a free space layer which is included in order that the z=0
plane can be used as the aperture plane. The ice covered ground plane
has a rectangular area, LxLy’ and the ground plane is centered with
respect to the x and y axes.

A rough ice layer on a ground plane may be modeled as a two-layer
dielectric multilayer structure with a thickness distortion of the
layers. An example of this idea is shown in Figure 2.2. As before,

Layer 1 is the ice layer and Layer 2 is simply free space. The
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Figure 2.1. Geometry of a ground plane with a uniform layer of ice.
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Figure 2.2. Ground plane covered with a non-uniform thickness of ice,
modeled as a two-layer multilayer with layer thickness

distortions.
presence of Layer 2 allows the aperture plane to remain as the z=0
plane, even with the rough ice present. The goal of this study is to
determine the effect that the roughness of the ice has on the
backscatter of the ground plane.

Although not necessary, this report will investigate the
backscattered field in the $-2(¢=90°) plane, where it is a maximum.
This is done mainly to simplify the discussion of the results. It also
prohibits the presentation of the examples from getting excessive. The
extension to other ¢-planes is straightforward and can be done if
necessary.

During the mathematical development of the backscattered field,

the ice covered ground plane will be treated as a two layer dielectric



multilayer backed by a ground plane. Vhen the ice has a uniform
thickness, this multilayer is a planar multilayer since the boundaries
between the layers form planes. A rough ice surface will be treated as
a thickness distortion in the layers of the multilayer. A plane vave
{s assumed to be incident on the twc layer multilayer from the
direction indicated by (6) in Figure 2.2, and the backscattered field
{s to be determined. The polarization of the incident wave separates
the analysis into two cases. A TE vave or perpendicularly polarized
vave (to the incidence plane) will be treated first, after which will

follow the case of TM or parallel prlarized incidence.

B. TE Case

For the TE case, the incident alectric field can be written as,

i Eoejkysineejkzcose (2.1)

1

wvhere k::=-2):-’—1 is the free space wave number. Under the Physical Optics
approximation described in the introduction, a point (x,y) on a
distorted multilayer will cause a reflected plane wave,

E: - R(X,Y,0) Eoejkysine e-jkzcose (2.2)

vhere R(x,y,0) is the reflection ccefficient of a planar multilayer
having the same geometry of the distorted multilayer, at the point
(x,y), for an angle of incidence, (8). This expression for the

reflected field should be a reasonable approximation for the true field



provided that the radius of curvature of the distortion at the point
(x,y) is sufficiently large.

As mentioned earlier, the z=0 plane is chosen to be the aperture
plane. The reflected field given by Equation (2.2) can be used to form
the equivalent magnetic current, M, in the aperture. The magnetic

current is found from,
M«<2E xh (2.3)

vhere ﬁ; is the aperture field. Combining Equations (2.2) and (2.3),

and noting that fi=2 for large radii of curvature,

/ L L
-2 EOR(x,y,Q)ejkYSine § x| <o~ 4 Iyl <42
= (2.4)
L L
0 IxI > 5 4 Iyl > 5%

vhich shows the assumption of zero aperture field outside of the
multilayer. The equivalent magnetic current can be integrated with the

free space Green’s function to produce the electric vector potential F

(2]

_ -jkr _ et
F.® JI H(rr) eIKE' T’ 4o (2.5)

wvhere £ is the radial unit véctor,

r’ is the source location,



r is the distance to a far fieid point,
and the integration is over the enti:e aperture.

Using Equation (2.4) in Equation (2.5) produces

ke 2 [by72
=€ E R(x.y,9) ejZkysine dxdy ¢

Fe—=u %
-L /2 J-L /2
X y

vhich is the result from considering the $=90° plane and for
considering backscatter. Since

¢ = £sinBsin¢g + ésinesin¢ + ;cos¢
in the 4=90° plane,

y = tsin6+ écose
Finally, from [2],

Eg = —ij¢
E¢ = ije

vhich, from using Equations (2.6) ard (2.7), results in the

backscattered field,

(2.6)

(2.7)



/2 /2
X

_o=Jkr y
By = Tgnr JkEqcose RCx,y, 0061510 axay  (2.8)
-L /2 J-L /2
X y
and
'E,=0. (2.9)

Obviously, to find the backscattered field, the integral,

2 [by/?
(e) = R(x,y,0)el 2KYsing 4 4o (2.10)
L./2 J-L./2
X y

must be solved. This can be done numerically provided that the planar
multilayer reflection coefficients, R(x,y,0), can be found. To find
these, use has been made of the recursive technique of Richmond [3].
Vith this technique, the Physical Optics approximation and Equation
(2.8), the backscattered field of many types of ice layer distortions
can be found.

It is possible to further investigate the effects of ice layer
distortions by choosing to study a particular type of distortion. For
this report, it is of interest to examine the effects of a distortion
that is periodic in space. .To further simplify this analysis,
distortions which are a function of a single coordinate only will be

considered. Hence, the reflection coefficient can be written as,

R(x,y,0) = R(y,0) = R(y+nA,8) (2.11)

!



vhere n is an integer and A is the spatial period of the distortion.

Further, let the length of the ground plane, in the y direction,

be an integral number of spatial wavelengths,

(2.12)

Using Equation (2.11) in Equation (Z.10), it can be seen that the

integral takes the form

/2

y .
e - L R(y,0) eI2Xysin® 4y (2.13)
~-L /2
y
This integral can be vritten as a summation over each period,
A N2
a(e) = L Z R(y,0) e 2KVsin® 4y (2.14)
n  JnA-A2
and the summation is carried over all of the periods.
Making the variable transformation,
(2.15)

T+ NA=Y

and recalling Equation (2.11), Equation (2.14) becomes,



A2
Q(8) = L E:: R(T,0) e
n J-A2

j2ksin®(T+nA) dt (2.16)

Separating the exponential terms leaves the integral independent of the

summation,

A2
ae) = L R(T,0)el2kTsiné 4. Z oJ2knAsing® (2.17)
-N2 n

Using Equation (2.17), the backscattered field for a distortion that is

periodic in y can be written as,

_jkr A2
E < =& JKE cos® L R(y,e)ejZky81ne dy ejanAsine .
nr 0 X E
n

¢ 2
-A2
(2.18)

Note that written in this form, it is evident that the periodically
distorted ice layer may be interpreted as an array. The elements of
the array are the individual periods of the distorted ice layer. The
response of a single period; or element in the array, is represented by
the integral in Equation (2.18). The summation in that equation
accounts for the phasing differences between the periods or elements in
the array. In antenna theory, this term is called the array factor.

The array factor is a geometric series and it can be shown to sum to

[4)

10



sin u M
AF = Z oJ2knAsing _ __&——1 (2.19)

. sin 3

wvhere u=2kAsin®, and again, M is the total number of periods. This

array factor has a maximum value of ¥ and can thus be normalized by

writing

AF = M fiil%—fl (2.20)
M sin [‘2-5)

vhere the term in the brackets is celled the normalized array factor.

Using Equation (2.20) in Equation (2.18), the backscattered field

can be written as,

-jkr sin
E, = . jkE cos® L M (——l R(y,e) eJZky51nedy .
¢ 2nr M siin)

(2.21)

The echo area or radar cross sectioa of the ice covered ground plane,
given by,
(2.22)

o = 4nr? E¢ 3

would be

11



sin[‘z—] H] t W2 o :

o = K1COS20; s R(y,0) e32KVsindy l  (3.23)

n X u
wstnf3)] [z

This result can be checked by considering the case of a perfect

conductor only, R(y)=-1, of length Ly-HA. Using the substitution,

At=y, Equation (2.23) can be written as,

sin{% M) : /2 :
¢ = L‘z‘f‘—'—e(x.xmm —E L JVta]| . (2.24)
M sin (‘2') -1/2

The integral produces the well known function,

r/z Juty, sin [g]

1/2 @]
and thus Equation (2.24) becomes

. u 2
2 sin[—z- H)
G = k?cos?0 (LxHA)’

[sin(kL _sin6)]?
c = k?cos?9 (L.L)? (kL sin6)
n Xy ( Lys noe)

or

(2.25)

vhich is the Physical Optics backscatter in the ¢=90° plane of a

perfectly conducting plate.

12



In order to gain some information about the effect of the
roughness of the ice alone, it is pcssible to subtract the
backscattered field of the ground plane with a uniform thickness of
ice, from the backscattered field of the ground plane with the rough

ice layer. Returning to Equation (¢.21), this action produces the

equation,
A2
-jkr sin@ M)
-e _J j2kysin®
0E = “%5— JKE cos® LM - [a(y,e)-xo(e)]e dy
M siniz N2
(2.26)

wvhere Ro(e) {s the reflection coefficient of the ground plane with the
uniform thickness of ice. The thickness of the uniform layer is chosen
to be equal to the thickness of the rough layer at the ends of the
period (y=+A/2). The radar cross saction, due to the ice layer

distortions alone is then,

sin[% H) *1 V2

2
80(9) = E—3%519(an)2 — jZkysinedy
M sin(z]

kv, o (@]
-N2
(2.27)

In order to consider the effect of a single period alone, assume the

multilayer is of unit length in the x direction. Then

sin(% M) M2 :

2 2 R

AO(e) = k C:S 0 Mz 5 [R(y,e)_Ro(e)]ejZkySIIledy .
M sin(i) N2

(2.28)

13



To eliminate the effect of all the periods, divide each side by the

array factor,

A2 2
2 (8) = — 80(9) kzc:sze [#(y,e)-Ro(e)]ejZky81nedy
Lsin[z ] N2
sin(u/2)
(2.29)

This equation represents the radar cross section vhich is due to a
single period of the ice roughness. This form is the most useful for
this type of study, for it allows just the roughness itself to be
studied. Note that the action of isolating a single period of an array
of scatterers has introduced artificial edges on the individual
scatterer (the ends of the period), that do not appear in the total
scatterer. The subtraction aids in an attempt to remove the effects of
the edge, by eliminating the first order diffraction of the edges.
Hovever, because of the nature of R(y,®), there will be higher order
diffraction, such as slope diffraction, that is not removed by the
subtraction. So although this technique can provide useful
information, the limitations stated here must be considered when
interpreting the results.

Equation (2.29) also eliminates the need to specify the size of
the ground plane. All that is required is the length of the period, A,
the constitutive parameters of the ice, and a function representing the

distortion. Once the radar cross section of a single period is known,

14



the result can be simply extended to a ground plane of any size. Vith

ap known, and knowing that there are M periods of distortion iny,

sin[%ﬂ) 2[;&]: : 2.30)

8a(0) = ap(e) M2 ;—;;;ng

vhere the last term scales the result to any length in the x direction.
Equation (2.29) is the result that has been sought by this study.
Examples using this equation will be given in Section III; hovever,

first it will be shown that a similer result may be obtained for TM

wave incidence.

C. TM Case

The derivation for TM wave incidence is similar to that followed

in the previous section. Here, the incident magnetic field is assumed

to be

5]

i o ejkysine ejkzcose (2.31)

Hx-'n_

vhere n is the impedance of free space. The ground plane and ice layer

causes the reflected field,

E
o ejkysine e—jkzcose (2.32)

H = R(X,¥,0)

15



where R(x,y,0) is the reflection coefficient, using the Physical Optics
approximation, for TM wave incidence. For this case, the equivalent

electric currents

J = 2 xﬁa (2.33)
are found in the aperture,
( E L L
kysine

2 22 R(x,y,0)e) V" Ix] <5 Iyl s 5%

J - . (2.34)
Lx
0 x| > 5= |yl > 3

Knowing the equivalent currents, the magnetic vector potential, A [2],

can be found,

e-jkr
4nr

jkE-r’

A= J(r")e ds’ § , (2.35)

from which the backscattered field is obtained by using [2],
Ee = ~Jjuu Ae

E¢ - —jw A¢ . (2-36)

16



Substituting the currents into Equation (2.35), and using Equation
(2.36), the backscattered field in the ¢=90° plane, for TM wave

incidence is,

/2 /2
X y
jkEocose R(x,y,8) e
-L /72 J-1./2
X y

-jkr
E, = ==

jZkysined
e 2nr

xdy  (2.38)

and

E, =0 . (2.39)

Note that Ee for TM incidence has tle identical form that E¢ had for TE
incidence. The only difference is :n the calculated value of the
reflection coefficient, since it wiil be different for the tvo
polarizations.

Because of the similarity of the two expressions, the results of
the previous section can be applied here. Assuming periodic
distortions in y and no distortions in x as before, the radar cross

section of the ice covered ground pilane will be

sin(ZEM) * V2 :
R(y,0)e3 2kysin€yy 1 (2 .40)

-N2

0(8) = EiS%EiQ (LxH)z ___I_Igj
M sin|s

vhere u=2kAsin® as before.

17



Similarly, the radar cross section, due to the distortions alone,

is
sin(% M] (A2 2
2 2
85(0) = ’Q_‘;_E_G(an)z Tt [R(y,9)-R°(9)]e:|2kysmedy '
M sin (f) “A2
(2.41)

and the radar cross section, due to a single period is

N2 2

9,(6) - ﬁc%”-—e- [R(y,e)-no(e)]ew‘ys*“edy . (2.42)
A2

The examples to be presented in Section III will show the results

of ice covered ground planes for both TE and TM vave incidence.

D. Summary

In this section, the backscattered field of a ground plane covered
by an ice layer with non-uniform thickness was considered. The problem
vas approached by treating the structure as a two layer dielectric
multilayer with layer thickness distortions and making a Physical
Optics approximation to the'distorted layers. In effect, this
approximation allowed the reflection coefficients of an infinite planar
multilayer to be used. The reflection coefficients vere used to find
the reflected field of the structure, which in turn vere used to find
equivalent currents in an aperture plane. The equivalent currents were

then integrated to find the backscattered field.

18



The special case of ice layer tlickness that is a periodic
function of a single coordinate, was considered in detail. It was
found that, for this case, a normali:ed radar cross section could be
found for a single period. The comp:.ete radar cross section could be
found by multiplying by the number o¢ periods, the normalized array
factor, and the length in the other .oordinate. Studying the radar
cross section in this form allows th: effect of the roughness alone to
be examined, without having to specify the size of the multilayer.

Oonly ice distortions of the typ= mentioned were examined in
detail. However, note that any distortion function, in an ice layer of
finite size, will at least have a period of unity. Thus, this analysis
should have sufficient generality to treat any distortion of ice layer
thicknesses, provided fi=2 at the surface. Also since distortions were
taken to be a function of y only, the backscattered field was only
derived for the §-% (¢=90°) plane. Although the equations could have
been written more generally, this plane will contain the maximum effect
for the type of distortions considered.

The backscattered field was derived for both TE and TM wave
incidence. The field for both polarizations was found to have the same
form and thus the interpretation is the same. Backscatter from
arbitrary polarization of the incident wave can be constructed from

these two results.



III. EXAMPLES

A. Introduction

In this chapter, the analysis of the previous section will be
applied to several examples of ground planes covered by ice. A
Gaussian function will be used to describe the roughness of the ice
layer. The examples will demonstrate the effect of the ice roughness
as the amplitude and shape of the Gaussian function is varied. Note
that physically this represents the thickness variation of the ice
layer. The examples will provide plots of the normalized radar cross
section of a single period of the distortion function given by Equation
(2.29) or Equation (2.42). To extend the results to an actual ice
covered ground plane, the terms shown in Equation (2.30) must be

included.

One of these terms, the normalized array factor, modifies the
angular dependence of the backscatter. For this reason, the section
will begin with a review of the array factor and examine what it
implies to the backscatter pattern. The examples will be presented

after that review.

B. The Array Factor -

A discussion of array factors is included in most antenna texts.
The array factor, which appears in the backscattered field expression,
is a result of the assumption that the distortions in the layer
thickness of the multilayer are periodic. The fact that it does appear
allows the backscattered field to be interpreted as coming from an

array of scatterers. These scatterers, when viewed from the

20



backscatter direction, appear to be uniformly illuminated, and thus,

the normalized array factor,

sin(% M] 3.1

M sin (E)

{s of the same form as the array factor for an M element, uniformly
excited, equally spaced array antenna. The difference between the

scattering and the antenna is in the interpretation of u. For the

antenna, u would be given by,
u = kdsin® (3.2)

vhere d is the element spacing. In the backscattering problem,

u = 2kAsin® (3.3)

where A is the size of the spatial period of the distortion. An extra
factor of two appears in Equation (3.3) because for backscatter, the
array factor must take into account the relative phase difference
between scatterers in the incident field in addition to the relative
phase difference between the fields reflected by the scatterers. In an
array antenna, there is only the phase difference between the fields
radiated by the elements. The net result of this factor of two is that

in the scattering problem, the vis:ble region of the array factor is
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twice as large as that of an array antenna. This will be further
demonstrated shortly.

The array factor shown in Equation (3.1) is periodic, as a
function of u, with a period of 2n. It attains a maximum value at
u=2n, vhere n is an integer. An example of the array factor, for M3,
is shown in Figure 3.1. Other properties of this array factor, as

listed in [4] are as follows:

1. As M increases, the width of the main lobe narrows.

2. As M increases, there are more minor lobes in one period of
the array factor. The total number of lobes in one period is
M-1, with one main lobe and M-2 minor lobes.

3. The width of the main lobe, in u-space, is 4n/M and the width
of the minor lobes are 2n/M.

4. The minor lobe levels decrease with increasing M. As M gets
large, the peak minor lobe level approaches the peak minor
lobe level of the sin(u)/u function, -13.3 dB.

5. The magnitude of the array factor is symmetric about u=n.

These properties may be observed by examining graphs of the array
factor for different values of M. Figure 3.2 shows the array factor
for M=5, Figure 3.3 is M=10, and Figure 3.4 is M=100. Kraus [3]
provides a more extensive set of array factor plots.

The array factor is transformed to real space by Equation (3.3).
How much of the array factor pattern, or howv many periods of it appear
in real space, depends on the value of A. Note that since the maximum

value of sin® is unity, the boundary of real space is given by,

A
Um = 2kA = 41 X ! (3.4)
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Figure 3.4. Normalized array factor for M=100.
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wvhich when compared to the boundary for an array antenna, um-2n a’2,
shows that the visible region is twice as large for the array of
scatterers. From this equation, an¢ knoving that the array factor has a

period of 2m, it can be seen that more than one period will occur if

(3.5)

B =

A
X 2

The important consequence of this {5 that under this condition, the main
lobe is repeated, which creates a grating lobe in the backscatter
pattern. Recall that in an antenna array, a grating lobe is ensured
vhen the element spacing is one wavalength. The fact that periods of
one half wavelength cause grating lobes in a backscatter pattern is
again due to the factor of two in Equation (3.3). For spatial periods
that are less than a half wavelength, there is only one main lobe and
only a portion of one full period of the array factor appears in real
space.

The periodicity of the array factor allows the érating lobe

positions to be predicted by,

n
sin® = m (3-6)

vhere n is an integer, up to and ircluding the largest integer that

satisfies

n < 2(MN) . (3.7)
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These equations are true, independent of the number of periods of M,
since M only affects the width of the main lobe, and not the position.
The array factor is an important consideration, when determining
the effects of distortions on the multilayer, because of the grating
lobes. Even though far out grating lobes are reduced by the cos(9)
factor in the final pattern, this factor is only -3 dB at 45°. Thus,
many grating lobes could give returns on the same order of magnitude as
the broadside backscatter. Further, it must be remembered that the
return of a single period of distortion will have the envelope of the
array factor impressed on it, in the final backscattered field.
Examples of these single period returns, are given in the following

sections.

C. Radar Cross Section due to Gaussian Ice Layers

In earlier work on the backscatter from layer distortions in
dielectric multilayers [6], it was found that a convenient distortion
function to use was the Gaussian function. The study compared results
produced by the Physical Optics technique with results generated by a
Moment Method technique. The results compared favorably out to about
15° awvay from grazing incidence. Therefore, this study will present

Physical Optics results for the range of angles

Note that the backscatter pattern is symmetric about 6«0° for the

geometries to be considered.
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The frequency used in the examples is 10 GHz. For convenience, the
period of the ice distortion function is chosen to be one wvavelength at
this frequency. Thus, the width of the section of the ground plane,
vhich is beneath this ice, is 1.1802". For reference, it is instructive
to examine the backscatter pattern c¢f this section of the ground plane
alone. This pattern is presented ir Figure 3.5 and it applies to both
TE and TM polarizations. The analysis presented in Section II seeks to
determine how the ice layer changes this pattern.

The section of the ground plane is covered by a Gaussian ice layer

as shown in Figure 3.6. The thickness of the ice layer is given by,

=)

Ae “'%  inch ysiamz|

D(y) = (3.8)
0 a2

vhere A is the amplitude of the Gaussian function and o is a parameter
which controls the shape of the ice layer and is not the radar cross
section. In the figure, B is the thickness of the ice layer at the end
of the period. This thickness of i-e, covering the entire section of
ground plane, will be referred to as the base layer of ice. The base
layer of ice, over the ground plane, is used to calculate Ro(e) in
Equations (2.29) and (2.42). This reflection coefficient is then
subtracted from the reflection coefficient of the Gaussian ice layer
over the ground plane to produce the subtracted backscatter pattern
represented by Equations (2.29) and (2.42). Hence, the subtracted

backscatter pattern represents the effect of the Gaussian ice bump on
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Figure 3.6. One period of a Gaussian ice layer covering a ground plane.

the backscatter pattern of the grouad plane and base layer of ice.
However, it will soon be shown that the base layer of ice has very
little effect on the backscatter of the ground plane.

The independent parameters which are used in the examples are the
amplitude of Gaussian function A, and the thickness of base layer B.

The choice of these two parameters determines the value of o which is

found from,

A (3.9)
2{7 In(A/B)"

=

This equation is derived from Equation (3.8) by using
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D(A/2) = B

and solving for o.

(3.10)

Before the subtracted backscatter patterns can be calculated, the

constitutive parameters of ice must be determined.

non-magnetic and therefore the relative permeability is unity.

complex relative permittivity is given by [7],

s,e'_jsl'
r r r

el + ez a2f?

14 ———— .
& " T4 o't

<L (el—ez)af

r 1l + «?f?

and f is the frequency in Hz.

€, = 75

a=1.2 x 10

vhere T is the temperature in degrees C.

D.C. to 10 GHz and from 0°C to -70°C.

-4 -0.1T
e

(s)

For pure vater ice,
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For 10 GHz and 0°C,

Pure wvater ice is

The

(3.11)

(3.12)

(3.13)

These relations are good from



€ " = 3-00
r

and

€ " = 6.00 x 107> (3.14)
At 10 GHz and -70°C,

e ' = 3.00
r
and

£ 1" = 5.47 x 108 (3.15)

Thus at 10 GHz and any applicable temperature, pure vater ice is nearly

lossless. Therefore, the examples vill use the relative permittivity

represented by Equation (3.14).

The geometry of the ice layers in the first example is represented
in Figure 3.7. This example considers a base layer of 0.025 inch and
four Gaussian function amplitudes vith 4=0.05, 0.1, 0.15 and 0.2 inch.
First, consider the backscatter of the base layer over the section of
the ground plane. This is shown in Figure 3.8 vhich is applicable to
both TE and TM polarizations. Comparing this figure with the pattern in
Figure 3.5 shows the negligible effect that the base layer has on the
backscatter of the conducting plate

The effect of the Gaussian bumps for TE wave incidence can be seen
in Figure 3.9(a). This figure show: the subtracted backscatter
represented by Equation (2.29). Re:all that this figure represents the
changes in the backscatter pattern jue to the introduction of the

Gaussian ice bump on the uniform base layer. This figure indicates that
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the effect is greater for thicker ice layers, at all angles. The

subtracted backscatter for this example, with TM wave incidence, is shown

in Figure 3.9(b). Again, the effect is greater for the thicker layers.
The limitations of the model must be kept in mind while examining

the calculated results. Since the model is based on a Physical Optics

approximation, the condition

jo 13
Ne
(24

vhere # is the normal to the surface, must hold. This approximation
becomes worse as the amplitude of the distortion is increased.
Additionally, the shadowing which occurs as the incidence angle
approaches grazing is not included in the analysis.

The geometry of the ice layers considered in the second example is
shown in Figure 3.10. Here a base layer of 0.05 inch thickness is used
along with Gaussian function amplitudes of A=0.1, 0.15 and 0.2 inch. The
backscatter of the base layer, backed by the conducting plate is shown in
Figure 3.11. Again the nearly lossless ice has negligible effect on the
backscatter of the plate. The subtracted backscatter for this example is
shown in Figure 3.12. The trend of an increased backscatter level, for
thicker ice layers, is exhibited in these calculations also.

The geometry of the ice layers considered in the third example is
shown in Figure 3.13. Here a base layer of 0.10 inch is used along with

Gaussian function amplitudes of A=0.15 and 0.2 inch.
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The backscatter of the base layer, tacked by the conducting plate, is
shown in Figure 3.14. Comparison of Figure 3.14 with Figure 3.5 shows
that the base layer has negligible cffect on the backscatter of the
plate. The subtracted backscatter -or this example is shown in Figure
3.15. Again, a greater thickness o' ice causes a greater effect on the
backscatter of the plate.

The reason that the subtracted backscatter levels increase with an
increase in the thickness of the ic= layer is related to the fact that
the ice is nearly lossless. Becaus® the ice is nearly lossless, the
thickness of the layer only modifies the phase of the reflection
coefficient. The modification to the magnitude of the reflection
coefficient is negligible. This was demonstrated in Figures 3.8, 3.11
and 3.14, vhich showed that a base layer of ice does not significantly
effect the backscatter pattern of the plate. Again wve observe that this
is dependent on satisfying the approximation that fi=2 since the
reflection (transmission) coefficient at the first interface becomes

dependent on the incidence angle.

D. Summary

In this chapter, the practical implications of the results derived
in Section II were considered. These derivations show that a periodic
ice cover over a ground plane may te treated as an array of individual
scatterers. Each element in this &rray is a section of the ground
plane, covered by one period of the ice layer. The backscattered field

of the array is the product of the individual response of a single
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element and an array factor which takes into account the phase
differences between the elements of the array.

The first part of this section examined the array factor. The
properties of the array factor were listed and the differences between
an array antenna and an array of scatterers were pointed out. It was
also shown that distortion periods greater than A/2 will produce grating
lobes in the backscatter pattern. Several examples of the array factor,
for different numbers of elements, were given.

The response of a single period of a Gaussian ice layer over the
ground plane was also examined in this section. To do this, three base
layers, each with five separate thickness Gaussian functions, wvere
considered. The results presented showed the response as a function of the

amplitude of the Gaussian function and the thickness of the base layer.

IV. SUMMARY AND CONCLUSIONS

The analysis used in this report is based on an approximation so that
all internal reflections can be incorporated readily into the solution.
This seriously restricts the height of the ice discontinuity. To extend
this analysis, it would be necessary to incorporate a ray tracing
procedure to find the total reflected fields in aperture plane and proceed
as before. An alternate solution would consist of using the more time
consuming integral equation solution. However, it is clear for even these
small height irregularities that this surface roughness is a significant
contributor to the RCS. It will only increase as the height is increased.

This report has investigated the effect of variations in the

thickness of an ice layer on the backscattered field of a ground plane.
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Vhen the variation is periodic, it has been found that the structure may
be treated as an array of scatterers, with the elements of the array being
a section of the ice covered ground plane, containing a period of the
variation. The results of an individual scatterer are easily extended to
a structure containing many such scatterers. Several examples were given
to show the response from ice layers having a Gaussian shape.

The scattering analysis presented in this report is based on a
Physical Optics approximation. Therefore, it is anticipated that the
analysis is the most accurate for angles of incidence near broadside. As
the angle of incidence approaches g-azing, the Physical Optics
approximation is not an adequate representation of the true scattering
mechanisms. Additionally, the accuracy of the Physical Optics
approximation depends on the type of distortion function being considered.
The amplitude and period of the dis:tortion function must be such that the
radius of curvature is sufficiently large to allov this to be a reasonable
approximation. Earlier comparisons of the results of the Physical Optics
technique with Moment Method calculations indicate that the Physical
Optics technique should give reasonable results to within 15° of grazing
incidence [6].

Finally, it should be noted that the amplitudes of the distortion
function chosen for use in the examples, vere an arbitrary choice. It is
possible that the value chosen may not be typical of what occurs in
practice. Therefore it is likely that the examples with the largest

amplitudes should be treated as worst cases.
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